skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xi, Dongmeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chord measures are newly discovered translation-invariant geometric measures of convex bodies in R n {{\mathbb{R}}}^{n} , in addition to Aleksandrov-Fenchel-Jessen’s area measures. They are constructed from chord integrals of convex bodies and random lines. Prescribing the L p {L}_{p} chord measures is called the L p {L}_{p} chord Minkowski problem in the L p {L}_{p} Brunn-Minkowski theory, which includes the L p {L}_{p} Minkowski problem as a special case. This article solves the L p {L}_{p} chord Minkowski problem when p > 1 p\gt 1 and the symmetric case of 0 < p < 1 0\lt p\lt 1 . 
    more » « less
  2. Abstract To the families of geometric measures of convex bodies (the area measures of Aleksandrov‐Fenchel‐Jessen, the curvature measures of Federer, and the recently discovered dual curvature measures) a new family is added. The new family of geometric measures, called chord measures, arises from the study of integral geometric invariants of convex bodies. The Minkowski problems for the new measures and their logarithmic variants are proposed and attacked. When the given ‘data’ is sufficiently regular, these problems are a new type of fully nonlinear partial differential equations involving dual quermassintegrals of functions. Major cases of these Minkowski problems are solved without regularity assumptions. 
    more » « less
  3. Abstract General affine invariances related to Mahler volume are introduced. We establish their affine isoperimetric inequalities by using a symmetrization scheme that involves a total of $2n$ elaborately chosen Steiner symmetrizations at a time. The necessity of this scheme, as opposed to the usual Steiner symmetrization, is demonstrated with an example (see the Appendix). 
    more » « less